
In the case of the system when the base of the cylinder is raised above the plane of the 
elementary area by an amount yo (Fig. ib) the local angular coefficient is determined from 
the equation 

m* - - m * *  (7) ~dF~'Fs ~ ~dF~.F, ~dF~.Fs' 

where ~dF~'F2 and ~dFI.F2 are the local angular coefficients for cylinders of heights y~ and 
yo. 

Curves of the dependence of the local angular coefficient on the dimensionless distance 
X = x:/R and the dimensionless height Y = y~/R, obtained on the basis of the solutions (5) 
and (6), are presented in Fig. 2. 

NOTATION 

dF1, elementary area; F2, section of emitting surface seen from center of area dF1; 
~dF~dFa,local angular coefficient; R, radius of cylinder; xl, distance from center of area 
dF~ to axis of cylinder (X = xl/R, dimensionless distance); yl and yo, height of cylinder 
(Y = y/R, dimensionless height); r, distance of center of area dF1 from an arbitrary point 
on surface F2; N, normal to center of area dF1; ~o, angle defining boundary of visible sec- 
tion of cylindrical surface; 0~, angle between normal to center of area dF~ and straight line 
connecting center of dF~ with an arbitrary point on surface F2; @2, angle between normal to 
surface F2 at an arbitrary point and straight line connecting this point with center of dF~; 
x, y, z, coordinates. 
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METHOD OF "JOINING" OF SOLUTIONS IN THE DETERMINATION OF A PLANE 

AND A CYLINDRICAL PHASE INTERFACE IN THE STEFAN PROBLEM 

I. M. Kutasov, V. T. Balobaev, and R. Ya. Demchenko UDC 536.425 

It is shown that the position of the phase interface in the Stefan problem can be 
expressed through two functions: One function determines the position of the melt- 
ing-temperature isotherm in the problem without phase transitions and the second 
does not depend on time. 

Two most popular courses presently exist for determining the law of motion of the phase 
interface in the Stefan problem: approximate analytical solutions of the problem and numeri- 
cal methods using a computer. Considerable difficulties are encountered on the latter course 
in the stage of analysis of the numerical material obtained and the attempt to represent the 
results in the form of analytical dependences of the position of the phase interface on the 
determining parameters and criteria. The following method can be proposed as one variant of 
analysis. Let the amount of latent heat of the phase transitions per unit volume of material 
approach zero. In this case a plane interface, for example, approaches its limiting value 
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~o(T). It is obvious that to(Z) characterizes the position of the isotherm Tme at the time 
T in the ordinary nonsteady problem without phase transitions. 

The idea of the method consists in determining the coordinate of the phase interface 
as a combination of two functions, one of which (to(T)) varies with time while the second is 
a constant quantity for the given problem, determined by the assigned parameters. Thus, for 
the plane one-dimensional problem we set 

- - a  = (~o - -a)  , ,  a = const. (1) 

Analogously, for the cylindrical coordinate we write 

h - -  r o = ( h  o - -  ~ )  % (2) 

s ince  the  thawing r ad iu s  (of the  melted zone) i s  u s u a l l y  measured from the ax i s  of the c y l i n -  
der .  From physical considerations it follows that 0 < ~ < i and 0 < @~ < i. Henceforth we 
will call ~ and @I the moderating ratios. When Eqs. (i) and (2) are valid the calculation 
of the phase interfaces comes down to the determination of ~ and ~i, since the functions ~o 
and ho are known for many problems [i, 2]. In this connection the method which we proposed 
for determining the phase interface is called the method of "joining" of solutions. For the 
most general statement of the Stefan problem it is an approximate method. In a number of 
cases, however, the method admits of an exact interpretation of the results of a computer 
calculation, such as with a constant boundary condition of the first kind. The possibility 
of applying this method for a semibounded uniform space is well illustrated by the well- 
known exact but particular solutions of Neumann--Stefan [i] and A. V. Lykov [3]. For the 
process of thawing of frozen rocks Tme = 0~ These solutions are written in the following 
form: 

= ~ F ~ - ,  

F~n- LWI31 = T ~t exp 4a t ~':,x + 7", 
2 w ]/~-t erf ( ~1 ) 

exp( ~ ) 
4af 

erf ( 4V~)~1 

~t 1 
- - i f - -  

(3) 

(4) 

(5) 

i6) 

Here the entire effect of the phase transitions is taken into account by the left-hand terms 
of Eqs. (4) and (6). When W = 0 the rate of movement of the 0~ isotherm in the ordinary 
nonsteady problem without phase transitions will be characterized by 81 and $2. The form of 
the solution is not changed in this case. Unfortunately, the moderating ratio ~ cannot be 
obtained in explicit form. The quantity ~ can be obtained using the majority of the approxi- 
mate solutions, which usually have the form 

(~__a) 2 :  f(T) ,(u~) (7) 

If ~(0) = B ~ 0 (and we are considering just such equations), then in the problem without 
phase transitions the position of the zero isotherm is determined from the equation 

( ~ 0 - - a ) 2 -  t ( ~ )  ( 8 )  
B 

Then from Eqs. (7) and (8) we obtain 

- ( ~ - - a )  , .  (9) 
B 

- -  a = (~o - -  a) , (V/) 

We can show that for the similar cylindrical problem one can approximately take 

h~ -- r~~ - th = const. (i0) 
- -  .r 0 
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TABLE i. 
(-19). 

Values of the Coefficients in Eqs. 

Fo -k, -~, -E, -F, 

0,1--0,3 
0,3--1,0 

1--.9. 
2--3 
3--6 
6--10 

0,0311 
0,0355 
0,0355 
0,0472 
0,0223 
0,0355 

0.362 
0,370 
O, 337 
0,298 
O, 350 
0,333 

0,866 
0,866 
0,866 
0,765 
0,728 

--0,226 

1,136 
1,136 
1,303 
1,639 
1,714 
2,942 

For this, with the aim of determining the thawing radius h, we solved the following system 
of differential equations on an M-222 computer: 

OTt ( 0 Z T t  _4_ 1 0 T t  ) 
0r -----at Or 2 ' r Or ; r o a r < h ,  (ll) 

OTf : a f  ( cg~Tf 1 OTf ) 
Ov ~, Or ~ + r Or ; h<~r~ra. (12) 

( OT--Lf--3"t OTt ) =LW dh 
~'f Or -Or--r=a d--'-~ (13) 

with the following conditions: 

T t(Q,  x)=Tw;  Tf ( h ) = 0 ;  Tf (~, ~ ) = ~ ;  h ( 0 ) = Q ;  Tf (r, 0 ) = ~ .  

The q u a n t i t y  r a was t a k e n  as  e q u a l  to  t w i c e  t h e  e f f e c t i v e  r a d i u s  o f  a c t i o n  r e [ 4 ] :  r a = 
2 r e ;  r e  = ro + 2.18-~r 

The q u a n t i t y  r e  was c a l c u l a t e d  a t  t h e  maximum v a l u e s  o f  a f t  and t h e n  was t a k e n  as  c o n -  
s t a n t .  A c o m p u t a t i o n  a l g o r i t h m  was d e v e l o p e d  f o r  t h e  s o l u t i o n  o f  t h e  s y s t e m  ( 1 1 ) - ( 1 3 ) .  For  
t h i s  we used  t h e  d i f f e r e n c e  method o f  " t r a p p i n g "  t h e  phase  f r o n t  a t  a node  o f  t h e  d i f f e r e n c e  
g r i d  [ 5 ] .  I t s  e s s e n c e  c o n s i s t s  i n  t h e  f o l l o w i n g :  The r e g i o n  b e i n g  s t u d i e d  i s  d i v i d e d  i n t o  a 
g r i d  w i t h  a s t e p  Ar = c o n s t  w h i l e  t h e  d i f f e r e n t i a l  e q u a t i o n s  i n  p a r t i a l  d e r i v a t i v e s  a r e  r e -  
p l a c e d  by  i m p l i c i t  d i f f e r e n c e  e q u a t i o n s .  The thawing  t ime  p e r  s t e p  o f  t h e  g r i d  i s  found  by  
t h e  i t e r a t i o n  method u s i n g  an e q u a t i o n  d e r i v e d  f rom t h e  c o n d i t i o n  ( 1 3 ) .  Then a t  each  i t e r a -  
t i o n  s t e p  t h e  s y s t e m s  o f  d i f f e r e n c e  e q u a t i o n s  a r e  s o l v e d  s e p a r a t e l y  f o r  t h e  two z o n e s .  A 
v a r i a b l e  t ime  s t e p  i s  o b t a i n e d  i n  t h i s  c a s e .  In  a n a l y z i n g  t h e  r e s u l t s  o f  t h e  c a l c u l a t i o n s  
on t h e  N-222 compute r  we used  t h e  t h e o r y  o f  t h e  s i m i l a r i t y  o f  t h e r m a l  p r o c e s s e s  w i t h  phase  
transitions. Without dwelling on the derivation of the similarity criteria, we write the 
quantities determining the process which we studied: 

Fo at~ Ko = LW ; Kv ~t Tr O; Cvt 
- -  roe ; CvfTw ~ f  T w Crf Ctf" (14) 

We also introduce the dimensionless parameters H = h/ro and R = r/ro. The values of the 
criterial quantities and dimensionless parameters were varied in the following ranges: 

l < H ~ < 3 . 0 1 ,  0 < F o < 6 . 7 ,  0 . 0 5 ~ < K o ~ 8 ,  1.~<Ctf ~ 2 ,  0 .25~<Kv~<l ,  0.005~<0~<0.3. (15) 

When W = 0 we have a t = af = a and Cvt = Cvf = CV, since in the Stefan problem a change in 

the thermophysical parameters is accomplished only through phase transitions. To determine 
the 0~ isotherm, i.e., the limiting value of the thawing radius, it is necessary to solve 
the equation 

Ol/ =__O2V +__1 __OV., l ~ R < o o ,  V =  T(R, F o ) - - T r  (16) 
a Fo OR R OR r w -  T r 

w i t h  t h e  c o n d i t i o n s  V(R, 0) : 0 and V w : v ( l ,  Fo) : 1.  

The s o l u t i o n  o f  t h i s  e q u a t i o n  w i t h  t h e  g i v e n  c o n d i t i o n s  i s  known [6] b u t  i t  i s  e x p r e s s e d  
t h r o u g h  a c o m p l i c a t e d  i n t e g r a l .  For  s m a l l  v a l u e s  of  Fo (up t o  0 . 2 - 0 . 3 )  t h i s  i n t e g r a l  i s  a p -  
p r o x ~ n a t e d  by t h e  f o l l o w L u g  e q u a t i o n  [6 ] :  
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TABLE 2. Values of ~, for Three Variants: No. 6 (0 = 0.026, 
Ko = 1.23), No. 18 (O = 0.026, Ko = 0.31), No. 56 (8 = 0.078, 
Ko = 0.5). 

H 

1,30 
1,42 
1,69 
1,96 
2,14 
2,32 
2,50 
2,68 
2,86 
3,0l 

Fo 

O, 068 
O, 142 
0,418 
0,860 
1,254 
1,733 
2,300 
2,958 
3,711 
4,413 

N~.6 

0,373 
0,376 
0,369 
0,366 
0,364 
0,363 
0,361 
0,360 
0,357 
0,355 

Fo 

0,026 
0,053 
0,156 
0,319 
0,463 
0,637 
0,842 
1,079 
1,349 
1,600 

N.~18 

0,60t 
0,590 
0,590 
0,585 
0,581 
0,579 
0,578 
0,576 
0,574 
0,573 

Fo 

0,037 
0,079 
0,236 
0,489 
0,715 
0,991 
1,317 
I, 696 
2,130 
2,536 

,N'.~ 56 

0,648 
0,620 
0,617 
0,614 
0,613 
0,613 
0,612 
0,612 
0,613 
0,613 

V(R, Fo) = erfc 2 ~ " (17) 

Va lues  o f  V = V(R, F o ) ' a r e  p r e s e n t e d  i n  [6] f o r  0 . 0 0 1  ~ Fo ~ 1000 w i t h  d i f f e r e n t  s t e p s  i n  Fo 
and R. Through an analysis of these data we propose an interpolation equation for 0.i < 
Fo ~ i0: 

V (R, Fo) = exp [-- A (R -- l) -- B (R -- l)Z]. (18) 

The coefficients A and B were determined on the basis of [6] by the method of least squares: 

A = lOk'Fok~; B = 10 kq Fo k]. (19) 

The values of kl, k2, kl, and k2 are presented in Table i. Since the position of the zero 
isotherm R = Ho is determined from (18) by the condition T(Ho, Fo) = 0, we obtain 

A 2 - -4 BIn  g A 

H ~  2B (20) 

For the range of 0 < Fo ~ 0.i the value of Ho was determined from Eq. (17) with R = Ho. 
Thus, the function ~i = ~1(Ko, 0, Kv, Ctf) was determined from the relation (Ho -- I)/(H -- 

I) = @1. 

The results of the calculations of the function ~ showed that ~i = const practically 
for the given variant. The function ~z was determined for a total of 70 variants of the 
problem. The values of ~i were determined with different values of Fo for each variant. 
Then the average value of the function ~ was calculated for each variant. The results of 
the calculation of ~z for three variants are presented in Table 2. 

It is difficult to estimate the error in the determination of ~: with different values 
of H (or Fo) because of the approximate nature of Eqs. (17) and (18). 

Thus, Eqs. (i) and (2) can be used in the solution of thermal problems with phase transi- 
tions. Finding the moderating ratios using a computer poses no difficulties. It is also of 
interest to clarify the applicability of Eqs. (i) and (2) with boundary conditions of the 
second or third kind. 

NOTATION 

T, r, T, temperature, cylindrical coordinate, time; CV, %, a, volumetric heat capacity, 
thermal conductivity, and thermal diffusivity of rocks; Tme, Tr, Tw, melting temperature, 
natural temperature of rocks, and temperature at cylinder wall or at surface of semibounded 
massif of rocks; ~, h, $o, ho, thawing depth and radius and their limiting values; ro, radius 
of cylinder; L, latent heat of ice melting; W, ice content per unit volume of rocks; Fo, Ko, 
Kv, Fourier, Kossovich, and Kovner numbers. Indices t and f pertain to thawed and frozen 
rocks, respectively. 
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STEADY HEAT TRANSFER TO A THIN INFINITE DISK WITH A CUT-OUT OPENING 

Yu. I. Babenko UDC 517,9:536.24.01 

A method is proposed which allows one to find the steady temperature gradient at 
the rim of a round opening cut out in an infinite nonuniform disk from the given 
temperature of the rim without a preliminary determination of the temperature 
field. 

It is required to find the quantity qR = 
the disk. 

A method was proposed earlier which allows one to find the change in the temperature 
gradient at the boundary of a semiinfinite region from the given change in the temperature of 
the boundary without a preliminary determination of the temperature field [i, 2]. In the 
present report the analogous problem is solved for the steady case. 

First let us consider the method in application to a well-studied problem. 

The steady cylindrically symmetrical temperature field in a uniform infinite disk with 
a round cut-out opening, cooled from the lateral surface in accordance with Newton's law, is 
described by the problem 

( d2dr" l d ) . - z - c +  ? r = o ;  R < ~ r < ~ ;  (1)  
, r d r  , 

T]r--n ~ TR; T]~=| = O; y : eons t>  O. 

( ~ T / 3 r ) r =  R, w h i c h  d e t e r m i n e s  t h e  h e a t  f l u x  t o  

The known solution has the form 

T = T~ K~ �9 K~(V?R) (2 )  

The proposed method of finding qR without a preliminary determination of the temperature 
field consists in the following. We represent Eq. (i) in the form of a product of two oper- 
ators, each of which contain only the first derivative with respect to r: 

] --IZ oo ! --rt 

- -  ? " b,~(r + ' ~  ? - a ,~(r  r - - - - O .  ( 3 )  
dr .=o n~o 

By a n a l o g y  w i t h  [1]  t h e  f u n c t i o n s  a n a n d  b n c a n  b e  d e t e r m i n e d  u s i n g  r e c u r r e n t  e q u a t i o n s  
if one "multiplies" the operator expressions in brackets and equates terms with equal powers 
of y_i/2 to the original operator (i). It turns out that 
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